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Введение
• Начало 70-х: связь энтропии и горизонта событий черной дыры. Работы Я.Д. Бекенштейн; 
Дж. Бардина, Б.Картера, С. В. Хокинга.

• В 1974 году С.В. Хокинг опубликовал статью, в которой показал наличие температуры у 
черной дыры массой m:

• В 1976 году У. Унру обнаружил, что равноускоренный наблюдатель с ускорением 𝑎
«чувствует» планковский спектр с температурой:



Цель работы

• Рассмотреть существующие способы получения температуры Унру

• Представить попытку получения температуры Унру, основанную на подходе Фейнмана

• Основываясь на принципе эквивалентности, сделать качественные выводы касательно 
процесса Хокинга

Далее в работе ℏ = 𝑐 = 𝐺 = 𝑘 = 1, выбранная сигнатура (+, -, -, -).



Квантование поля в искривленном 
пространстве
Рассмотрим поле 𝜙 в пространстве с метрикой 𝑔𝛼𝛽 с плотностью Лагранжиана  
ℒ следующего вида:

𝑅(𝑥) – скаляр Риччи,  𝑔 – детерминант матрицы метрического тензора, 𝜉 – некоторый 
параметр.

Уравнения Эйлера-Лагранжа принимают вид:



Квантование поля в искривленном 
пространстве
Разложим поле 𝜙 по нормированным модам  𝑢𝑘:

Здесь нормировка подразумевается в смысле скалярного произведения (𝜙1, 𝜙2) в виде 
интеграла по пространственноподобной гиперповерхности:



Квантование поля в искривленном 
пространстве 
𝑎𝑘 , 𝑎𝑘

† (по аналогии с гармоническим осциллятором в классической квантовой механике) 
играют роль операторов рождения и уничтожения частиц с импульсом 𝐤 и удовлетворяют 
коммутационным соотношениям:

Разложим поле 𝜙 по другому нормированному набору:



Квантование поля в искривленном 
пространстве 
В силу полноты обоих разложений, полевые моды могут быть выражены друг через друга:

Такое соотношение называется преобразованием Боголюбова, 𝛼𝑖𝑘 , 𝛽𝑖𝑘 − коэффициенты 
Боголюбова. При 𝛽𝑖𝑘 ≠ 0 неэквивалентность вакуумных состояний 𝑎𝑘 0 = 0, 𝑎𝑘

 0 =  0 ∀𝐤
видна из соотношений: 



Переход в координаты Риндлера
Рассмотрим двумерный случай и произведем замену координат:

𝑎 = 𝑐𝑜𝑛𝑠𝑡 > 0. Тогда метрика принимает вид:

Такая система координат называется системой координат Риндлера.

Траектории постоянной координаты 𝜉 в 
пространстве Минковского



Переход в координаты Риндлера
Так как метрика в таких координатах Риндлера конформна метрике в пространстве 
Минковского, то моды поля в них принимают вид:

Введем функции:



Переход в координаты Риндлера
Разложим поле 𝜙 по этим модам:

При этом поле можно разложить и по модам пространства Минковского, что приводит к 
возникновению двух вакуумных состояний 0𝑀 = 0 и 0𝑅 = 0.

Рассмотрим  линейные комбинации:



Переход в координаты Риндлера
Выражая поле через эти линейные комбинации,

Получим связь между вакуумными состояниями:



Переход в координаты Риндлера
Рассмотрим равноускоренного наблюдателя в пространстве Риндлера, что соответствует 
траектории 𝜉 = 𝑐𝑜𝑛𝑠𝑡. Тогда риндлеровский наблюдатель обнаружит:

частиц с импульсом 𝑘. Такое распределение соответствует планковскому спектру с 
температурой 𝑇0 =

𝑎

2𝜋
. Согласно соотношению Толмена для локальной температуры, 

наблюдатель будет «чувствовать» температуру:



Ускоренный детектор в пространстве 
Минковского
Воспользуемся моделью детектора, предложенной Унру и Де Виттом. Такой детектор 
представляет собой точечную частицу с внутренними уровнями энергии E, связанную 
монопольным взаимодействием с полем 𝜙.

Пусть траектория детектора - 𝑥𝜇 𝜏 , где 𝜏 – собственное время детектора. Взаимодействие 
детектора с полем описывается Лагранжианом 𝑐𝑚 𝜏 𝜙(𝑥𝜇 𝜏 ), где 𝑐 − константа связи, 
𝑚 − оператор монопольного момента детектора. Амплитуда перехода в возбужденное 
состояние в первом порядке теории возмущений определяется: 



Ускоренный детектор в пространстве 
Минковского
Временная эволюция оператора монопольного момента описывается уравнением:

где 𝐻0 𝐸 = 𝐸 𝐸 . Факторизуем амплитуду перехода:



Ускоренный детектор в пространстве 
Минковского
Пусть поле разложено по полному набору нормированных мод. В первом порядке 
возможны переходы только в одночастичные возбужденные состояния 𝜓 = 1𝑘 . Учитывая 
введенную ранее нормировку, получим: 

Чтобы получить вероятность перехода детектора в возбужденное состояние, подставим 
выражение выше в формулу для амплитуды перехода в одночастичное возбуждение, 
возведем в квадрат и просуммируем по всем возможным состояниям. В результате имеем:

где  𝐹 − функция отклика детектора.



Ускоренный детектор в пространстве 
Минковского
Рассмотрим функцию отклика детектора вида:

Здесь 𝐷+ − положительно-частотная вайтмановская функция Грина.  В случае 
безмассового скалярного поля она принимает вид:

где 𝜀 − малая добавка.



Ускоренный детектор в пространстве 
Минковского
Рассмотрим теперь ускоренный детектор в пространстве Минковского. Найдем вероятность 
перехода в единицу собственного времени: 

Для гиперболической траектории функция Вайтмана принимает вид:

Разложим в ряд гиперболический синус и подставим в выражение для вероятности  
перехода.



Ускоренный детектор в пространстве 
Минковского
Окончательно имеем для вероятности перехода детектора в возбужденное состояние:

Наличие фактора 𝑒2𝜋 𝐸−𝐸0 /𝜌 в знаменателе указывает на планковский характер излучения 
с температурой 𝑇 =

𝜌

2𝜋
, что согласуется с результатом, полученным выше.



Кратко о глобальном
Зададимся вопросом о характере спектра в случае, когда детектор сначала движется с 
постоянной скоростью, а потом начинает ускоряться. Такая задача была рассмотрена, в 
частности, С.Шлихтом (2003).  В своей работе он ввел модифицированную 
корелляционную  функцию:

И рассматривал детектор, движущийся по траектории:

Результат: детектор регистрирует излучение, приближающееся к тепловому с любой 
наперед заданной точностью.



Кратко о глобальном
Необычный подход к получению планковского спектра был предложен Т.Бойером (2011). В 
своей работе он указал на связь между нулевыми колебаниями поля и тепловым излучением 
при помощи конформных преобразований в двумерном пространстве.

В пространстве Минковского такие преобразования могут быть записаны в виде:

Преобразования переводят плоские волны с частотой |𝑘| в плоские волны с частотой 
|𝑘|

𝜎
,

колебательные моды 𝜙 𝑡, 𝑥 𝑘 = 𝑒𝑖𝑘𝑥−𝑖|𝑘|𝑡 в колебательные моды 𝜙′ 𝑡′, 𝑥′
𝑘 = 𝑒 𝑖𝑘𝑥′−𝑖 𝑘 𝑡′ /𝜎 .

Последние могут быть рассмотрены как новые функции от старых координат 𝜙′(𝑡, 𝑥).



Кратко о глобальном
Конформное отображение можно рассматривать не в смысле преобразования координат 
и метрики, а в смысле преобразования колебательных мод:

Аналогичный подход можно реализовать и в координатах  Риндлера, что и было 
проделано Бойером.

Результат: в риндлеровской системе координат подобные преобразования ведут к 
возникновению теплового излучения с ненулевой температурой.

Связь спектра с нулевыми колебательными модами была также продемонстрирована в 
работе А.Ландулфо, С.Фуллинга и Дж.Матсаса (2019).



Наивная идея
Амплитуда перехода по Фейнману:

Здесь 𝐷𝑥 – интеграл по всем возможным траекториям, соединяющим события 1 и 2, 𝑆[𝑥]
– действие, описывающее  систему.

Квадрат модуля амплитуды будет определять вероятность искомого события. 
Фейнмановский подход можно обобщить и на случай квантовой теории поля.



Наивная идея
Рассмотрим для двумерного пространства Минковского переход в координаты Риндлера в 
следующей форме:

Метрика принимает вид:

В таких координатах траектория 𝜉 = 𝑐𝑜𝑛𝑠𝑡 соответствует движению с постоянным 

ускорением 𝛼 =
1

𝜉
, собственное время ускоряющегося наблюдателя 𝜏 =

𝜂

𝛼
.



Наивная идея
В таких координатах плотность Лагранжиана принимает вид: 

Соответствующие уравнения Эйлера:

Решение уравнения ищем в виде 𝜙 = 𝑒−𝑖𝜔′𝜂𝑔 𝜉 .



Наивная идея
𝑔 𝜉 удовлетворяет уравнению: 

Его решение:

Подставим в выражение для плотности Лагранжиана:



Наивная идея
Рассмотрим действие на траектории 𝜉 =

1

𝛼
:

Вводя бесконечные пределы интегрирования, мы предполагаем, что равноускоренный 
наблюдатель движется бесконечно долго. Подставляя полученную плотность Лагранжиана, 
имеем:



Наивная идея
В выбранной ранее нормировке 𝐴2 =

1

4𝜋𝜔′
. Так как 𝜙 = 𝑒−𝑖𝜔′𝜂𝑔 𝜉 , 𝜂 = 𝜏𝛼, то физический 

смысл частоты несет 𝛼𝜔′. Пусть теперь каждый осциллятор характеризуется не конкретной 
частотой, а некоторым интервалом частот Δ𝜔 = 𝜔 − 𝜔∗. Имеем для действия одного 
такого осциллятора:

Чтобы получить действие для поля, проинтегрируем по всем частотам, учитывая их 
плотность распределения: 



Наивная идея
Предположим, что 𝜌 𝜔 имеет вид:

Качественную зависимость можно получить из соображений: 𝜌(𝜔) ~ 𝜔′ =
𝜔

𝛼
, так как при 

нашем рассмотрении каждый из осцилляторов характеризуется шириной Δ𝜔, то и 
𝜌 𝜔 ~

𝜔

𝛼Δ𝜔
. В этом случае действие принимает вид: 



Наивная идея
Возводя амплитуду в квадрат, получаем с точностью до нормирующего множителя 
вероятность наблюдать на траектории одну частицу с частотой 𝜔:

Для статистической суммы имеем: 



Наивная идея
В итоге, по аналогии с бозонами, получаем для среднего числа наблюдаемых частиц:

Что соответствует полученным ранее результатам.

Отметим, что если проводить подобные вычисления в пространстве Минковского, то 
получится нулевая вероятность регистрации частиц. Действительно, в пространстве 
Минковского плотность Лагранжиана для безмассового скалярного поля обращается в 
ноль на уравнениях поля, а, значит, вне зависимости от частоты:



Заключение 
Во всех рассмотренных выше способах получения температуры существенную роль играло 
предположение о движении наблюдателя с постоянным ускорением в течение 
бесконечного промежутка времени.

Вопрос: что произойдет, если наблюдатель будет двигаться с постоянным ускорением в 
течение конечного промежутка времени?

Из наших рассуждений следует предположить, что при этом будут возникать поправки к 
планковскому спектру. 

В случае испарения черных дыр процесс по определению проходит за конечный 
промежуток времени. Но тогда, из принципа эквивалентности, следует ожидать, что спектр 
излучения не окажется тепловым, а, следовательно, не будет потери информации. 



Переход в координаты Риндлера
Рассмотрим равноускоренного наблюдателя в пространстве Минковского с метрикой:

Для получения траектории найдем решение системы:

Здесь 𝑢𝜇 − координаты 4-скорости, 𝑎𝜇 − координаты 4-ускорения, 𝜌 − модуль ускорения 
наблюдателя.



Переход в координаты Риндлера
Такая система уравнений имеет решение в виде:

Здесь 𝜏 − собственное время наблюдателя. 


